Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1328128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414736

RESUMO

The strong ethnopharmacological utilization of Isodon rugosus Wall. Ex. Benth is evident in the treatment of several types of pain and inflammation, including toothache, earache, abdominal pain, gastric pain, and generalized body pain and inflammation. Based on this background, the antinociceptive effects of the crude extract, various fractions, and essential oil have been reported previously. In this research work, we isolate and characterize pure bioactive compounds from I. rugosus and evaluate possible mechanisms using various in vivo and in vitro models. The pure compounds were analyzed for analgesic and anti-inflammatory activities through various assays. The column chromatography of the chloroform fraction of I. rugosus led to the identification of two pure compounds, i.e., 1 and 2. Compound 1 demonstrated notable inhibition (62% writhing inhibition, 72.77% COX-2 inhibition, and 76.97% 5-LOX inhibition) and anti-inflammatory potential (>50% paw edema inhibition at various intervals). The possible mechanism involved in antinociception was considered primarily, a concept that has already been elucidated through the application of naloxone (an antagonist of opioid receptors). The involvement of adrenergic receptors was investigated using a hot plate model (an adrenergic receptor antagonist). The strong ethnomedicinal analgesic background of I. rugosus, supported by previous reports and current observations, leads to the conclusion that I. rugosus is a potential source of antinociceptive and anti-inflammatory bioactive compounds. It may be concluded from the results that the isolated analgesic compounds of I. rugosus may be a possible alternative remedy for pain and inflammation management with admirable efficacy and safety profiles.

2.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38399423

RESUMO

Breast cancer begins in the breast cells, mainly impacting women. It starts in the cells that line the milk ducts or lobules responsible for producing milk and can spread to nearby tissues and other body parts. In 2020, around 2.3 million women across the globe received a diagnosis, with an estimated 685,000 deaths. Additionally, 7.8 million women were living with breast cancer, making it the fifth leading cause of cancer-related deaths among women. The mutational changes, overexpression of drug efflux pumps, activation of alternative signalling pathways, tumour microenvironment, and cancer stem cells are causing higher levels of drug resistance, and one of the major solutions is to identify multitargeted drugs. In our research, we conducted a comprehensive screening using HTVS, SP, and XP, followed by an MM/GBSA computation of human-approved drugs targeting HER2/neu, BRCA1, PIK3CA, and ESR1. Our analysis pinpointed IRESSA (Gefitinib-DB00317) as a multitargeted inhibitor for these proteins, revealing docking scores ranging from -4.527 to -8.809 Kcal/mol and MM/GBSA scores between -49.09 and -61.74 Kcal/mol. We selected interacting residues as fingerprints, pinpointing 8LEU, 6VAL, 6LYS, 6ASN, 5ILE, and 5GLU as the most prevalent in interactions. Subsequently, we analysed the ADMET properties and compared them with the standard values of QikProp. We extended our study for DFT computations with Jaguar and plotted the electrostatic potential, HOMO and LUMO regions, and electron density, followed by a molecular dynamics simulation for 100 ns in water, showing an utterly stable performance, making it a suitable drug candidate. IRESSA is FDA-approved for lung cancer, which shares some pathways with breast cancers, clearing the hurdles of multitargeted drugs against breast and lung cancer. This has the potential to be groundbreaking; however, more studies are needed to concreate IRESSA's role.

3.
J Biomol Struct Dyn ; : 1-20, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38234048

RESUMO

Marburg virus infections are extremely fatal with a fatality range of 23% to 90%, therefore there is an urgent requirement to design and develop efficient therapeutic molecules. Here, a comprehensive temperature-dependent molecular dynamics (MD) simulation method was implemented to identify the potential molecule from the anti-dengue compound library that can inhibit the function of the VP24 protein of Marburg. Virtual high throughput screening identified five effective binders of VP24 after screening 484 anti-dengue compounds. These compounds were treated in MD simulation at four different temperatures: 300, 340, 380, and 420 K. Higher temperatures showed dissociation of hit compounds from the protein. Further, triplicates of 100 ns MD simulation were conducted which showed that compounds ID = 118717693, and ID = 5361 showed strong stability with the protein molecule. These compounds were further validated using ΔG binding free energies and they showed: -30.38 kcal/mol, and -67.83 kcal/mol binding free energies, respectively. Later, these two compounds were used in steered MD simulation to detect its dissociation. Compound ID = 5361 showed the maximum pulling force of 199.02 kcal/mol/nm to dissociate the protein-ligand complex while ID = 118717693 had a pulling force of 101.11 kcal/mol/nm, respectively. This ligand highest number of hydrogen bonds with varying occupancies at 89.93%, 69.80%, 57.93%, 52.33%, and 50.63%. This study showed that ID = 5361 can bind with the VP24 strongly and has the potential to inhibit its function which can be validated in the in-vitro experiment.Communicated by Ramaswamy H. Sarma.

4.
J Biomol Struct Dyn ; 42(4): 1711-1724, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37325855

RESUMO

Zika virus (ZIKV) spread is considered a major public health threat by the World Health Organization (WHO). There are no vaccines or drugs available to control the infection of the Zika virus, therefore a highly effective medicinal molecule is urgently required. In this study, a computationally intensive investigation was performed to identify a potent natural compound that could inhibit the ZIKV NS5 methyltransferase. This research approach is based on target-based drug identification principles where the native inhibitor SAH (S-adenosylhomocysteine) of ZIKV NS5 methyltransferase was selected as a reference. High-throughput virtual screening and tanimoto similarity coefficient were applied to the natural compound library for ranking the potential candidates. The top five compounds were selected for interaction analysis, MD simulation, total binding free energy through MM/GBSA, and steered MD simulation. Among these compounds, Adenosine 5'-monophosphate monohydrate, Tubercidin, and 5-Iodotubercidin showed stable binding to the protein compared to the native compound, SAH. These three compounds also showed less fluctuations in RMSF in contrast to native compound. Additionally, the same interacting residues observed in SAH also made strong interactions with these three compounds. Adenosine 5'-monophosphate monohydrate and 5-Iodotubercidin had greater total binding free energies than the reference ligand. Moreover, the dissociation resistance of all three compounds was equivalent to that of the reference ligand. This study suggested binding properties of three-hit compounds that could be used to develop drugs against Zika virus infections.Communicated by Ramaswamy H. Sarma.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Simulação de Dinâmica Molecular , Ligantes , Proteínas não Estruturais Virais/química , Adenosina , Metiltransferases/química , Transferases/metabolismo , Transferases/farmacologia , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Antivirais/química
5.
J Biomol Struct Dyn ; 42(1): 11-21, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37771142

RESUMO

Lung Cancer is the topmost death causing cancer and results from smoking, air pollution, cigar, exposure to asbestos or radon-like substances, and genetic factors. The cases of Lung Cancer in south Asian developing nations are being seen most due to heavy pollution and unbalanced lifestyle and putting a considerable burden on healthcare systems. The Food and Drug Administration of the USA has approved almost 100 drugs against SCLC and NSLC and a few drugs that are given to minimise the side effect of anticancer drugs. However, the drugs are shown to be resistant at significantly higher stages and non-affective on cancerous cells and have long-term side effects due to designing the drug by keeping one protein/gene target while designing or repurposing the drugs. In this study, we have taken five main lung cancer protein targets- Nerve growth factor protein (1SG1), Apoptosis inhibitor survivin (1XOX), Heat shock protein (3IUC), Protein tyrosine phosphate (3ZM3), Aldo-keto reductase (4XZL) and screened the complete prepared Drug Bank library of 155888 compounds and identified Variolin B (DB08694) as a multitargeted inhibitor against lung cancer using HTVS, SP and XP sampling algorithms followed by MM\GBSA calculation to sort the best pose. Variolin B is a natural marine antitumor and antiviral compound, so we analysed the ADMET properties and interaction patterns and then simulated all five P-L complexes for 100 ns in water using the NPT ensemble to check its selves against lung cancer. The docking results, ADMET and fingerprints have shown a good performance, and RMSD and RMSF results were with least deviation and fluctuations (<2Å) and produced a huge contact with other residues making the complex stable. The complexes initially fluctuated and deviated due to changes in the solute medium and sudden heat and stabilise after a few ns. However, extensive experimental validation is required before human use.Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias Pulmonares , Simulação de Dinâmica Molecular , Humanos , Simulação de Acoplamento Molecular , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Ligação Proteica , Detecção Precoce de Câncer
6.
Front Mol Biosci ; 10: 1258834, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38053576

RESUMO

Kingella kingae is a Gram-negative bacterium that primarily causes pediatric infections such as septicemia, endocarditis, and osteoarticular infections. Its virulence is attributed to the outer membrane proteins having implications in bacterial adhesion, invasion, nutrition, and host tissue damage. TonB-dependent receptors (TBDRs) play an important role in nutrition and were previously implicated as vaccine targets in other bacteria. Therefore, we targeted the conserved ß-barrel TBDR domain of these proteins for designing a vaccine construct that could elicit humoral and cellular immune responses. We used bioinformatic tools to mine TBDR-containing proteins from K. kingae ATCC 23330 and then predict B- and T-cell epitopes from their conserved ß-barrel TDR domain. A chimeric vaccine construct was designed using three antigenic epitopes, covering >98% of the world population and capable of inciting humoral and adaptive immune responses. The final construct elicited a robust immune response. Docking and dynamics simulation showed good binding affinity of the vaccine construct to various receptors of the immune system. Additionally, the vaccine was predicted to be safe and non-allergenic, making it a promising candidate for further development. In conclusion, our study demonstrates the potential of immunoinformatics approaches in designing chimeric vaccines against K. kingae infections. The chimeric vaccine we designed can serve as a blueprint for future experimental studies to develop an effective vaccine against this pathogen, which can serve as a potential strategy to prevent K. kingae infections.

7.
J Biomol Struct Dyn ; : 1-13, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37855303

RESUMO

Lung Cancer is the one that causes more fatalities in the world compared to other cancers, and its uniqueness is that it can be found in both males and females. However, recent data has shown that males are more affected due to lifestyle habits like smoking, tobacco consumption and inhaling polluted air. The World Health Organization has kept lung cancer on its priority list as it causes 1.8 million deaths worldwide each year, and the predictions show that the cases are going to increase year by year, and by 2050, there can be 3.8 million new cases and 3.2 million deaths, and the global health system is not prepared for it. Also, finding drug candidates that can help shrink cancerous cells and lead to their death is essential to reduce global mortality. The system needs drug compounds that can inhibit multiple paths together not to enter drug resistance quickly and to reduce costs. Our study identified a compound named Variolin B (DB08694) that belongs to the organic compounds class of pyrrolopyridines. The identified compound can inhibit multiple proteins, drastically reducing the global burden. Variolin B was identified as a potential candidate against lung cancer using the multisampling algorithm such as HTVS, SP, and XP, followed by MM\GBSA calculations showing the docking score of -9.245 Kcal/mol to -5.92 Kcal/mol. Also, we have validated it with ADMET predictions and molecular fingerprinting to analyse the interaction patterns. Further, the study was extended to molecular dynamics simulations for 100 ns to understand the complex stability and simulative interactions. The complex's overall molecular dynamics simulation helped us understand that the identified candidate is stable with the lowest deviation and fluctuations.Communicated by Ramaswamy H. Sarma.

8.
Microorganisms ; 11(10)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37894063

RESUMO

Multidrug resistance in bacterial strains known as superbugs is estimated to cause fatal infections worldwide. Migration and urbanization have resulted in overcrowding and inadequate sanitation, contributing to a high risk of superbug infections within and between different communities. The CRISPR-Cas system, mainly type II, has been projected as a robust tool to precisely edit drug-resistant bacterial genomes to combat antibiotic-resistant bacterial strains effectively. To entirely opt for its potential, advanced development in the CRISPR-Cas system is needed to reduce toxicity and promote efficacy in gene-editing applications. This might involve base-editing techniques used to produce point mutations. These methods employ designed Cas9 variations, such as the adenine base editor (ABE) and the cytidine base editor (CBE), to directly edit single base pairs without causing DSBs. The CBE and ABE could change a target base pair into a different one (for example, G-C to A-T or C-G to A-T). In this review, we addressed the limitations of the CRISPR/Cas system and explored strategies for circumventing these limitations by applying diverse base-editing techniques. Furthermore, we also discussed recent research showcasing the ability of base editors to eliminate drug-resistant microbes.

9.
Microorganisms ; 11(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37764144

RESUMO

Molecular mimicry, a phenomenon in which microbial or environmental antigens resemble host antigens, has been proposed as a potential trigger for autoimmune responses. In this study, we employed a bioinformatics approach to investigate the role of molecular mimicry in Clostridioides difficile-caused infections and the induction of autoimmune disorders due to this phenomenon. Comparing proteomes of host and pathogen, we identified 23 proteins that exhibited significant sequence homology and were linked to autoimmune disorders. The disorders included rheumatoid arthritis, psoriasis, Alzheimer's disease, etc., while infections included viral and bacterial infections like HIV, HCV, and tuberculosis. The structure of the homologous proteins was superposed, and RMSD was calculated to find the maximum deviation, while accounting for rigid and flexible regions. Two sequence mimics (antigenic, non-allergenic, and immunogenic) of ≥10 amino acids from these proteins were used to design a vaccine construct to explore the possibility of eliciting an immune response. Docking analysis of the top vaccine construct C2 showed favorable interactions with HLA and TLR-4 receptor, indicating potential efficacy. The B-cell and T-helper cell activity was also simulated, showing promising results for effective immunization against C. difficile infections. This study highlights the potential of C. difficile to trigger autoimmunity through molecular mimicry and vaccine design based on sequence mimics that trigger a defensive response.

10.
Pathogens ; 12(7)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37513704

RESUMO

Streptococcus pneumoniae contributes to a range of infections, including meningitis, pneumonia, otitis media, and sepsis. Infections by this bacterium have been associated with the phenomenon of molecular mimicry, which, in turn, may contribute to the induction of autoimmunity. In this study, we utilized a bioinformatics approach to investigate the potential for S. pneumoniae to incite autoimmunity via molecular mimicry. We identified 13 S. pneumoniae proteins that have significant sequence similarity to human proteins, with 11 of them linked to autoimmune disorders such as psoriasis, rheumatoid arthritis, and diabetes. Using in silico tools, we predicted the sequence as well as the structural homology among these proteins. Database mining was conducted to establish links between these proteins and autoimmune disorders. The antigenic, non-allergenic, and immunogenic sequence mimics were employed to design and validate an immune response via vaccine construct design. Mimic-based vaccine construct can prove effective for immunization against the S. pneumoniae infections. Immune response simulation and binding affinity was assessed through the docking of construct C8 to human leukocyte antigen (HLA) molecules and TLR4 receptor, with promising results. Additionally, these mimics were mapped as conserved regions on their respective proteins, suggesting their functional importance in S. pneumoniae pathogenesis. This study highlights the potential for S. pneumoniae to trigger autoimmunity via molecular mimicry and the possibility of vaccine design using these mimics for triggering defense response.

11.
J Biomol Struct Dyn ; : 1-11, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37144725

RESUMO

Campylobacter hyointestinalis is a causative agent of enteritis, proctitis, human gastroenteritis, and diarrhea. Reported transmission is from pigs to humans. Link with gastrointestinal carcinoma has also been established in non-Helicobacter pylori patients carrying this strain. The genome size of the strain LMG9260 is 1.8 MB with 1785 chromosomal and seven plasmid proteins. No therapeutic targets have been identified and reported in this bacterium. Therefore, subtractive computational screening of its genome was carried out for the purpose. In total, 31 such targets were mined and riboflavin synthase was utilized for screening natural product inhibitors against it. Among more than 30,000 screened natural compounds from the NPASS library, three (NPC472060, NPC33653, and NPC313886) were prioritized to have the potential to be developed into new antimicrobial drugs. Dynamics simulation assay along with other relevant parameters like absorption, toxicity, and distribution of the inhibiting compounds were also predicted and NPC33653 was identified as having the best drug-like properties among the prioritized compounds. Thus, it has potential to be pursued further for the inhibition of riboflavin synthesis in C. hyointestinalis for subsequent obstruction of its growth and survival.Communicated by Ramaswamy H. Sarma.

12.
Vaccines (Basel) ; 11(3)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36992283

RESUMO

The COVID-19 pandemic has caused havoc all around the world. The causative agent of COVID-19 is the novel form of the coronavirus (CoV) named SARS-CoV-2, which results in immune system disruption, increased inflammation, and acute respiratory distress syndrome (ARDS). T cells have been important components of the immune system, which decide the fate of the COVID-19 disease. Recent studies have reported an important subset of T cells known as regulatory T cells (Tregs), which possess immunosuppressive and immunoregulatory properties and play a crucial role in the prognosis of COVID-19 disease. Recent studies have shown that COVID-19 patients have considerably fewer Tregs than the general population. Such a decrement may have an impact on COVID-19 patients in a number of ways, including diminishing the effect of inflammatory inhibition, creating an inequality in the Treg/Th17 percentage, and raising the chance of respiratory failure. Having fewer Tregs may enhance the likelihood of long COVID development in addition to contributing to the disease's poor prognosis. Additionally, tissue-resident Tregs provide tissue repair in addition to immunosuppressive and immunoregulatory activities, which may aid in the recovery of COVID-19 patients. The severity of the illness is also linked to abnormalities in the Tregs' phenotype, such as reduced expression of FoxP3 and other immunosuppressive cytokines, including IL-10 and TGF-beta. Hence, in this review, we summarize the immunosuppressive mechanisms and their possible roles in the prognosis of COVID-19 disease. Furthermore, the perturbations in Tregs have been associated with disease severity. The roles of Tregs are also explained in the long COVID. This review also discusses the potential therapeutic roles of Tregs in the management of patients with COVID-19.

13.
Vaccines (Basel) ; 11(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36679947

RESUMO

The emergence of novel variants of SARS-CoV-2 and their abilities to evade the immune response elicited through presently available vaccination makes it essential to recognize the mechanisms through which SARS-CoV-2 interacts with the human immune response. It is essential not only to comprehend the infection mechanism of SARS-CoV-2 but also for the generation of effective and reliable vaccines against COVID-19. The effectiveness of the vaccine is supported by the adaptive immune response, which mainly consists of B and T cells, which play a critical role in deciding the prognosis of the COVID-19 disease. T cells are essential for reducing the viral load and containing the infection. A plethora of viral proteins can be recognized by T cells and provide a broad range of protection, especially amid the emergence of novel variants of SARS-CoV-2. However, the hyperactivation of the effector T cells and reduced number of lymphocytes have been found to be the key characteristics of the severe disease. Notably, excessive T cell activation may cause acute respiratory distress syndrome (ARDS) by producing unwarranted and excessive amounts of cytokines and chemokines. Nevertheless, it is still unknown how T-cell-mediated immune responses function in determining the prognosis of SARS-CoV-2 infection. Additionally, it is unknown how the functional perturbations in the T cells lead to the severe form of the disease and to reduced protection not only against SARS-CoV-2 but many other viral infections. Hence, an updated review has been developed to understand the involvement of T cells in the infection mechanism, which in turn determines the prognosis of the disease. Importantly, we have also focused on the T cells' exhaustion under certain conditions and how these functional perturbations can be modulated for an effective immune response against SARS-CoV-2. Additionally, a range of therapeutic strategies has been discussed that can elevate the T cell-mediated immune response either directly or indirectly.

14.
J Biomol Struct Dyn ; 41(14): 6633-6642, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35971958

RESUMO

The coronaviridae family has caused the most destruction among all the viral families in modern sciences. It is one of the recently discovered and added members of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which has caused the global pandemic and significant destruction worldwide. However, scientists worldwide have developed vaccines, which are being given to humans. The mutated strain of the virus has caused various uncertainties about whether the discovered drug and vaccines affect it. Even after the World Health Organization's approval for the vaccines, their effectiveness and protection ratio are still a major concern. At the community level, to this date, there is no medicine available to cure the patients. In this study, we have screened the vast library from Drug Bank and identified N-(4-Aminobutanoyl)-S-(4-methoxybenzyl)-L-cysteinylglycine (NSL-CG) that can work against two major targets of SARS CoV-2, replication-transcription and RNA dependent polymerase. Further, we have performed the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) and molecular dynamics simulation of the compound with both proteins individually, giving us enough evidence that the said drugs can work against the two targets together. Inhibiting the action of any of both proteins may lead to retaining the virus, and having a dual-targeted drug can be an extra precise measure for this process. The NSL-CG is an experimental drug belonging to the peptidomimetics class included in the small group of drugs with a docking score of -9.079 kcal/mol with replication-transcription -7.885 kcal/mol with RNA-dependent polymerase. Hence, through the complete flowed study, the NSL-CG can be further experimentally validated in in-vitro and in-vivo conditions before human utilisation.Communicated by Ramaswamy H. Sarma.

15.
Molecules ; 27(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36557793

RESUMO

Conventional anticancer treatments, such as radiotherapy and chemotherapy, have significantly improved cancer therapy. Nevertheless, the existing traditional anticancer treatments have been reported to cause serious side effects and resistance to cancer and even to severely affect the quality of life of cancer survivors, which indicates the utmost urgency to develop effective and safe anticancer treatments. As the primary focus of cancer nanotheranostics, nanomaterials with unique surface chemistry and shape have been investigated for integrating cancer diagnostics with treatment techniques, including guiding a prompt diagnosis, precise imaging, treatment with an effective dose, and real-time supervision of therapeutic efficacy. Several theranostic nanosystems have been explored for cancer diagnosis and treatment in the past decade. However, metal-based nanotheranostics continue to be the most common types of nonentities. Consequently, the present review covers the physical characteristics of effective metallic, functionalized, and hybrid nanotheranostic systems. The scope of coverage also includes the clinical advantages and limitations of cancer nanotheranostics. In light of these viewpoints, future research directions exploring the robustness and clinical viability of cancer nanotheranostics through various strategies to enhance the biocompatibility of theranostic nanoparticles are summarised.


Assuntos
Nanopartículas Multifuncionais , Nanopartículas , Nanoestruturas , Neoplasias , Humanos , Medicina de Precisão , Qualidade de Vida , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Nanoestruturas/uso terapêutico , Nanopartículas/uso terapêutico , Nanomedicina Teranóstica/métodos
16.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36422556

RESUMO

Antimicrobial resistance (AMR) is a leading cause of treatment failure for many infectious diseases worldwide. Improper overdosing and the misuse of antibiotics contributes significantly to the emergence of drug-resistant bacteria. The co-contamination of heavy metals and antibiotic compounds existing in the environment might also be involved in the spread of AMR. The current study was designed to test the efficacy of heavy metals (arsenic) induced AMR patterns in clinically isolated extended-spectrum ß-lactamase (ESBL) producing bacteria. A total of 300 clinically isolated ESBL-producing bacteria were collected from a tertiary care hospital in Lahore, Pakistan, with the demographic characteristics of patients. After the collection of bacterial isolates, these were reinoculated on agar media for reidentification purposes. Direct antimicrobial sensitivity testing (AST) for bacterial isolates by disk diffusion methods was used to determine the AST patterns with and without heavy metal. The heavy metal was concentrated in dilutions of 1.25 g/mL. The collected bacterial isolates were isolated from wounds (n = 63, 21%), urine (n = 112, 37.3%), blood (n = 43, 14.3%), pus (n = 49, 16.3%), and aspirate (n = 33, 11%) samples. From the total 300 bacterial isolates, n = 172 were Escherichia coli (57.3%), 57 were Klebsiella spp. (19%), 32 were Pseudomonas aeruginosa (10.6%), 21 were Proteus mirabilis (7%) and 18 were Enterobacter spp. (6%). Most of the antibiotic drugs were found resistant to tested bacteria. Colistin and Polymyxin-B showed the highest sensitivity against all tested bacteria, but when tested with heavy metals, these antibiotics were also found to be significantly resistant. We found that heavy metals induced the resistance capability in bacterial isolates, which leads to higher AMR patterns as compared to without heavy metal tested isolates. The results of the current study explored the heavy metal as an inducer of AMR and may contribute to the formation and spread of AMR in settings that are contaminated with heavy metals.

17.
Biomed Res Int ; 2022: 9051678, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246962

RESUMO

Cancer is one of the most challenging diseases in the modern era for the researchers and investigators. Extensive research worldwide is underway to find novel therapeutics for prevention and treatment of diseases. The extracted natural sources have shown to be one of the best and effective treatments for cell proliferation and angiogenesis. Different approaches including disc potato model, brine shrimp, and chorioallantoic membrane (CAM) assay were adopted to analyze the anticancer effects. Habenaria digitata was also evaluated for MTT activity against NIH/3T3 cell line. The dexamethasone, etoposide, and vincristine sulfate were used as a positive control in these assays. All of the extracts including crude extracts (Hd.Cr), saponin (Hd.Sp), n-hexane (Hd.Hx), chloroform (Hd.Chf), ethyl acetate (Hd.EA), and aqueous fraction (Hd.Aq) were shown excellent results by using various assays. For example, saponin and chloroform have displayed decent antitumor and angiogenic activity by using potato tumor assay. The saponin fraction and chloroform were shown to be the most efficient in potato tumor experiment, demonstrating 87.5 and 93.7% tumor suppression at concentration of 1000 µg/ml, respectively, with IC50 values of 25.5 and 18.3 µg/ml. Additionally, the two samples, chloroform and saponins, outperformed the rest of the test samples in terms of antiangiogenic activity, with IC50 28.63 µg/ml and 16.20 µg/ml, respectively. In characterizing all solvent fractions, the chloroform (Hd.Chf) and saponin (Hd.Sp) appeared to display good effectiveness against tumor and angiogenesis but very minimal activity against A. tumefaciens. The Hd.Chf and Hd.Sp have been prospective candidates in the isolation of natural products with antineoplastic properties.


Assuntos
Antineoplásicos , Neoplasias , Saponinas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antioxidantes/uso terapêutico , Clorofórmio/uso terapêutico , Dexametasona/uso terapêutico , Etoposídeo , Flavonoides/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Fenóis/farmacologia , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/química , Saponinas/uso terapêutico , Solventes/química , Vincristina/uso terapêutico
18.
Front Chem ; 10: 1034911, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247661

RESUMO

Human noroviruses (NV) are the most prevalent cause of sporadic and pandemic acute gastroenteritis. NV infections cause substantial morbidity and death globally, especially amongst the aged, immunocompromised individuals, and children. There are presently no authorized NV vaccines, small-molecule therapies, or prophylactics for humans. NV 3 C L protease (3CLP) has been identified as a promising therapeutic target for anti-NV drug development. Herein, we employed a structure-based virtual screening method to screen a library of 700 antiviral compounds against the active site residues of 3CLP. We report three compounds, Sorafenib, YM201636, and LDC4297, that were revealed to have a higher binding energy (BE) value with 3CLP than the control (Dipeptidyl inhibitor 7) following a sequential screening, in-depth molecular docking and visualization, physicochemical and pharmacological property analysis, and molecular dynamics (MD) study. Sorafenib, YM201636, and LDC4297 had BEs of -11.67, -10.34, and -9.78 kcal/mol with 3CLP, respectively, while control had a BE of -6.38 kcal/mol. Furthermore, MD simulations of the two best compounds and control were used to further optimize the interactions, and a 100 ns MD simulation revealed that they form stable complexes with 3CLP. The estimated physicochemical, drug-like, and ADMET properties of these hits suggest that they might be employed as 3CLP inhibitors in the management of gastroenteritis. However, wet lab tests are a prerequisite to optimize them as NV 3CLP inhibitors.

19.
Artigo em Inglês | MEDLINE | ID: mdl-35942378

RESUMO

Based on the diverse pharmacological potency and the structural features of succinimide, this research considered to synthesize succinimide derivatives. Moreover, these compounds were estimated for their biological potential in terms of anti-diabetic, anti-cholinesterase, and anti-oxidant capacities. The compounds were synthesized through Michael addition of various ketones to N-aryl maleimides. Similarly, the MOE software was used for the molecular docking study to explore the binding mode of the potent compounds against different enzymes. In the anti-cholinesterase activity, the compounds MSJ2 and MSJ10 exhibited outstanding activity against acetylcholinesterase (AChE), i.e., 91.90, 93.20%, and against butyrylcholinesterase (BChE), i.e., 97.30, 91.36% inhibitory potentials, respectively. The compounds MSJ9 and MSJ10 exhibited prominent α-glucosidase inhibitory potentials, i.e., 87.63 and 89.37 with IC50 value of 32 and 28.04 µM, respectively. Moreover, the compounds MSJ2 and MSJ10 revealed significant scavenging activity against DPPH free radicals with IC50 values of 2.59 and 2.52, while against ABTS displayed excellent scavenging potential with IC50 values 7.32 and 3.29 µM, respectively. The tentative results are added with molecular docking studies in the active sites of enzymes to predict the theoretical protein-ligand binding modes. Further detailed mechanism-based studies in animal models are essential for the in vivo evaluation of the potent compound.

20.
Microorganisms ; 10(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014052

RESUMO

Vaccines are vital for prevention and control of mycoplasma diseases. The exploration of a vaccine candidate for the development of a vaccine is imperative. The present study envisages the evaluation of immune and oxidative response against an adjuvanted, sonicated antigen of Mycoplasma capricolum subsp. capripneumonia in male Angora rabbits (1 year old, 2 kg) divided in four groups, each having six animals. Group 1 was the healthy control and received 1 mL PBS via subcutaneous route. Group 2 was administered 1 mL of saponin-adjuvanted and -sonicated antigen, Group 3 was given 1 mL of montanide ISA 50-adjuvanted and-sonicated antigen, and Group 4 was given 1 mL of standard vaccine via subcutaneous route. Animals were evaluated for cellular and humoral immune response and oxidative parameters at 0, 7, 14, 21, and 28 days of the study. Total leukocytic, neutrophilic, and basophilic counts showed a significant (p < 0.05) increase in vaccinated groups compared to the healthy group on most of the intervals. TNF-α levels were significantly (p < 0.05) higher in the Group 2 than the Group 1 at all the time intervals and more comparable to Group 4 than Group 3. IL-10 levels were significantly (p < 0.05) higher in vaccinated groups compared to the healthy group on days 14, 21, and 28, but were lower in Group 3 than in Group 2 and Group 4. More hypersensitivity as inflammation and histopathological cellular infiltration in the ear was produced in Group 2 and Group 4 than in Group 3. IgG levels were significantly (p < 0.05) higher in Group 2 and Group 4 than in Group 3 on days 14 and 21. Antibody titers were comparatively higher in Group 4, followed by Group 2 and 3, than Group 1. Significantly (p < 0.05) higher oxidant and lower antioxidant values were noted in Group 2 and 4 compared to Group 3 and Group 1 on most of the intervals. The TLC and antibody titer showed increasing trend throughout the trial, whereas TNF-α, IgG, L, M and E started decreasing from day 14, and IL-10, N and B started decreasing from day 21. This study concludes that the saponin-adjuvanted and-sonicated antigen induces comparatively higher immune response than montanide but is associated with oxidative and inflammatory reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...